OSGPR¶
sgptools.core.osgpr.OSGPR_VFE
¶
Bases: GPModel
, InternalDataTrainingLossMixin
Online Sparse Variational GP regression model from streaming_sparse_gp
Refer to the following paper for more details
- Streaming Gaussian process approximations [Bui et al., 2017]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
tuple
|
(X, y) ndarrays with inputs (n, d) and labels (n, 1) |
required |
kernel
|
Kernel
|
gpflow kernel function |
required |
mu_old
|
ndarray
|
mean of old |
required |
Su_old
|
ndarray
|
posterior covariance of old |
required |
Kaa_old
|
ndarray
|
prior covariance of old |
required |
Z_old
|
ndarray
|
(m_old, d): Old initial inducing points |
required |
Z
|
ndarray
|
(m_new, d): New initial inducing points |
required |
mean_function
|
function
|
GP mean function |
None
|
Source code in sgptools/core/osgpr.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
init_Z()
¶
Initializes the new set of inducing points (Z) for the OSGPR model. It combines a subset of the old inducing points (Z_old) with a subset of the current training data (X).
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: (M, d); A NumPy array of the newly initialized inducing points, combining old and new data-based points. |
Source code in sgptools/core/osgpr.py
maximum_log_likelihood_objective()
¶
Construct a tensorflow function to compute the bound on the marginal likelihood.
Source code in sgptools/core/osgpr.py
predict_f(Xnew, full_cov=False)
¶
Compute the mean and variance of the latent function at some new points Xnew.
Source code in sgptools/core/osgpr.py
update(data, inducing_variable=None, update_inducing=True)
¶
Configures the OSGPR model to adapt to a new batch of data. This method updates the model's data, its inducing points (optionally), and caches the posterior mean and covariance of the old inducing points to facilitate the streaming update equations.
Note: After calling this update, the OSGPR model typically needs to be trained further using gradient-based optimization to fully incorporate the new data and optimize its parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Tuple[ndarray, ndarray]
|
A tuple (X, y) representing the new batch
of input data |
required |
inducing_variable
|
Optional[ndarray]
|
(m_new, d); Optional NumPy array for the new
set of inducing points. If None and |
None
|
update_inducing
|
bool
|
If True, the inducing points will be updated. If False, they will remain as they were before the update call. Defaults to True. |
True
|
Source code in sgptools/core/osgpr.py
sgptools.core.osgpr.init_osgpr(X_train, num_inducing=10, lengthscales=1.0, variance=1.0, noise_variance=0.001, kernel=None, ndim=1)
¶
Initializes an Online Sparse Variational Gaussian Process Regression (OSGPR_VFE) model.
This function first fits a standard Sparse Gaussian Process Regression (SGPR) model
to a dummy dataset (representing initial data/environment bounds) to obtain an
initial set of optimized inducing points and their corresponding posterior.
These are then used to set up the OSGPR_VFE
model for streaming updates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X_train
|
ndarray
|
(n, d); Unlabeled random sampled training points. These points are primarily used to define the spatial bounds and for initial selection of inducing points. Their labels are set to zeros for the SGPR initialization. |
required |
num_inducing
|
int
|
The number of inducing points to use for the OSGPR model. Defaults to 10. |
10
|
lengthscales
|
Union[float, ndarray]
|
Initial lengthscale(s) for the RBF kernel. If a float, it's applied uniformly. If a NumPy array, each element corresponds to a dimension. Defaults to 1.0. |
1.0
|
variance
|
float
|
Initial variance (amplitude) for the RBF kernel. Defaults to 1.0. |
1.0
|
noise_variance
|
float
|
Initial data noise variance for the Gaussian likelihood. Defaults to 0.001. |
0.001
|
kernel
|
Optional[Kernel]
|
A pre-defined GPflow kernel function. If None,
a |
None
|
ndim
|
int
|
Number of output dimensions for the dummy training labels |
1
|
Returns:
Name | Type | Description |
---|---|---|
OSGPR_VFE |
OSGPR_VFE
|
An initialized |
Usage
import numpy as np
# from sgptools.core.osgpr import init_osgpr
# Define some dummy training data to establish initial bounds
X_initial_env = np.random.rand(100, 2) * 10
# Initialize the OSGPR model
online_gp_model = init_osgpr(
X_initial_env,
num_inducing=50,
lengthscales=2.0,
variance=1.5,
noise_variance=0.01
)
# Example of updating the model with new data (typically in a loop)
# new_X_batch = np.random.rand(10, 2) * 10
# new_y_batch = np.sin(new_X_batch[:, 0:1]) + np.random.randn(10, 1) * 0.1
# online_gp_model.update(data=(new_X_batch, new_y_batch))
Source code in sgptools/core/osgpr.py
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|